HomeAbout usANSTI NewsAn Antarctic eruption could ‘significantly disrupt’ international air traffic

An Antarctic eruption could ‘significantly disrupt’ international air traffic

A climber stands near Mount Erebus, an active volcano in Antarctica.

Dig into the black sand of Deception Island, off the coast of the Antarctic Peninsula, and hot water percolates up, heated by geothermal activity. The horseshoe-shaped spit of land is itself the flooded caldera of an active volcano and home to more than 50 volcanic craters—markers of past eruptions. Now, scientists have shown that ash lofted by a hypothetical eruption on Deception Island would potentially disrupt air traffic as far away as South America, Australia, and Africa.

The findings show that Antarctica’s volcanoes can have an effect across the world, says Charles Connor, a geoscientist at the University of South Florida in Tampa not involved in the research. “We have to reassess the potential hazards for global transportation networks posed by even these remote volcanoes.”

Adelina Geyer, a geologist at the Institute of Earth Sciences Jaume Almera in Barcelona, Spain, and colleagues focused on Deception Island because of its history of eruptions—30 or so in the past 10,000 years, and one as recently as 1970. It is also a popular destination: Both Argentina and Spain manage scientific research bases on the island, and tourists come to admire the world’s largest colony of chinstrap penguins and the rusted boilers and tanks that are relics of the early 20th century whaling industry there.

Geyer’s team modeled an eruption on Deception Island by simulating different column heights for volcanic ash: 5, 10, and 15 kilometers. (Indonesia’s Mount Agung, when it erupted last month, sent ash billowing up 9 kilometers.) The height of the plume determines which wind patterns it encounters, which, in turn, affects its dispersal. The researchers used an atmospheric transport model to track the way ash would disperse on regional and global scales and assess its possible effect on air travel.

Airborne ash is a serious problem for aircraft because it melts inside of engines and gums up fuel lines. And it doesn’t show up on radar. There have been hundreds of reported incidents of aircraft encountering volcanic ash, including the 1989 case of KLM flight 867, which lost power in all four engines and fell more than 13,000 feet after flying through an ash cloud from Alaska’s Redoubt Volcano. (The pilots managed to restart the engines, and the plane landed safely in Anchorage.) When Iceland’s Eyjafjallajökull erupted in 2010, its ash clouds prompted officials to close airspace across Europe, resulting in economic losses estimated to be billions of dollars.